[Tuto] Pilotage de moteur triphasé à faible vitesse

Cet article est inspiré du travail de BerryJam -> http://www.berryjam.eu/2015/04/driving-bldc-gimbals-at-super-slow-speeds-with-arduino/

L’objectif de cet article est de piloter un moteur triphasé à l’aide du module driver L6234 conçu par Letmeknow avec un Arduino Uno. Coté câblage, rien de plus simple:

Module Driver L6234Arduino
GNDGND
IN1D9
IN2D10
IN3D11
EN1D5
EN2D6
EN3D7
PWRVIN

Pour le moteur, on relie simplement les 3 phases sur les 3 broches P1, P2 et P3.

Coté logiciel, on va rester sur le code proposé par BerryJam:


//
// Slow and precise BLDC motor driver using SPWM and SVPWM modulation
// Part of code used from http://elabz.com/
// (c) 2015 Ignas Gramba www.berryjam.eu
//
 
 
const int EN1 = 5;
const int EN2 = 6;
const int EN3 = 7;
 
const int IN1 = 9;
const int IN2 = 10;
const int IN3 = 11;
 
 
// SPWM (Sine Wave)
//const int pwmSin[] = {127, 138, 149, 160, 170, 181, 191, 200, 209, 217, 224, 231, 237, 242, 246, 250, 252, 254, 254, 254, 252, 250, 246, 242, 237, 231, 224, 217, 209, 200, 191, 181, 170, 160, 149, 138, 127, 116, 105, 94, 84, 73, 64, 54, 45, 37, 30, 23, 17, 12, 8, 4, 2, 0, 0, 0, 2, 4, 8, 12, 17, 23, 30, 37, 45, 54, 64, 73, 84, 94, 105, 116 };
 
 
/// SVPWM (Space Vector Wave)
//const int pwmSin[] = {128, 147, 166, 185, 203, 221, 238, 243, 248, 251, 253, 255, 255, 255, 253, 251, 248, 243, 238, 243, 248, 251, 253, 255, 255, 255, 253, 251, 248, 243, 238, 221, 203, 185, 166, 147, 128, 109, 90, 71, 53, 35, 18, 13, 8, 5, 3, 1, 1, 1, 3, 5, 8, 13, 18, 13, 8, 5, 3, 1, 1, 1, 3, 5, 8, 13, 18, 35, 53, 71, 90, 109};
const int pwmSin[] = {128, 132, 136, 140, 143, 147, 151, 155, 159, 162, 166, 170, 174, 178, 181, 185, 189, 192, 196, 200, 203, 207, 211, 214, 218, 221, 225, 228, 232, 235, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 249, 250, 250, 251, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 253, 252, 252, 251, 250, 250, 249, 248, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 235, 232, 228, 225, 221, 218, 214, 211, 207, 203, 200, 196, 192, 189, 185, 181, 178, 174, 170, 166, 162, 159, 155, 151, 147, 143, 140, 136, 132, 128, 124, 120, 116, 113, 109, 105, 101, 97, 94, 90, 86, 82, 78, 75, 71, 67, 64, 60, 56, 53, 49, 45, 42, 38, 35, 31, 28, 24, 21, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 24, 28, 31, 35, 38, 42, 45, 49, 53, 56, 60, 64, 67, 71, 75, 78, 82, 86, 90, 94, 97, 101, 105, 109, 113, 116, 120, 124};
 
int currentStepA;
int currentStepB;
int currentStepC;
int sineArraySize;
int increment = 0;
boolean direct = 1; // direction true=forward, false=backward
 
//////////////////////////////////////////////////////////////////////////////
 
void setup() {
 
  setPwmFrequency(IN1); // Increase PWM frequency to 32 kHz  (make unaudible)
  setPwmFrequency(IN2);
  setPwmFrequency(IN3);
 
  pinMode(IN1, OUTPUT); 
  pinMode(IN2, OUTPUT); 
  pinMode(IN3, OUTPUT); 
  
  pinMode(EN1, OUTPUT); 
  pinMode(EN2, OUTPUT); 
  pinMode(EN3, OUTPUT); 
 
 
  digitalWrite(EN1, HIGH);
  digitalWrite(EN2, HIGH);
  digitalWrite(EN3, HIGH);
  
 
  sineArraySize = sizeof(pwmSin)/sizeof(int); // Find lookup table size
  int phaseShift = sineArraySize / 3;         // Find phase shift and initial A, B C phase values
  currentStepA = 0;
  currentStepB = currentStepA + phaseShift;
  currentStepC = currentStepB + phaseShift;
 
  sineArraySize--; // Convert from array Size to last PWM array number
}
 
//////////////////////////////////////////////////////////////////////////////
 
void loop() {
 
  analogWrite(IN1, pwmSin[currentStepA]);
  analogWrite(IN2, pwmSin[currentStepB]);
  analogWrite(IN3, pwmSin[currentStepC]);  
  
  if (direct==true) increment = 1;
  else increment = -1;     
 
  currentStepA = currentStepA + increment;
  currentStepB = currentStepB + increment;
  currentStepC = currentStepC + increment;
 
  //Check for lookup table overflow and return to opposite end if necessary
  if(currentStepA > sineArraySize)  currentStepA = 0;
  if(currentStepA < 0)  currentStepA = sineArraySize;
 
  if(currentStepB > sineArraySize)  currentStepB = 0;
  if(currentStepB < 0)  currentStepB = sineArraySize;
 
  if(currentStepC > sineArraySize)  currentStepC = 0;
  if(currentStepC < 0) currentStepC = sineArraySize; 
  
  /// Control speed by this delay
  delay(10);
 
}
 
 
void setPwmFrequency(int pin) {
  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {
    if(pin == 5 || pin == 6) {
      TCCR0B = TCCR0B & 0b11111000 | 0x01;
    } else {
      TCCR1B = TCCR1B & 0b11111000 | 0x01;
    }
  }
  else if(pin == 3 || pin == 11) {
    TCCR2B = TCCR2B & 0b11111000 | 0x01;
  }
}

Pour aller plus loin, vous pouvez joué sur le SVPWM comme dans ce tuto https://electronics-project-hub.com/3-phase-sine-wave-generator-code-arduino/ et piloter la vitesse de votre moteur par un potentiomètre.

//-------www<electronics-project-hub>com--------//
#include <math.h>
int Output1 = 9;
int Output2 = 10;
int Output3 = 11;
const int EN1 = 5;
const int EN2 = 6;
const int EN3 = 7;
int potVal = 0;
float A = 0;
float B = 0.104;
int Freq_IN = A0;
int var1 = 0;
int var2 = 0;
int var3 = 0;
int var4 = 0;
int var5 = 0;
int var6 = 0;
float Phase1 = 2 * PI / 3;
float Phase2 = 4 * PI / 3;
float Phase3 = 2 * PI;
boolean toggle = true; // true = Enabling Serial Plotter Output
void setup()
{
  Serial.begin(9600);
  pinMode(Output1, OUTPUT);
  pinMode(Output2, OUTPUT);
  pinMode(Output3, OUTPUT);
  pinMode(Freq_IN, INPUT);
  pinMode(EN1, OUTPUT); 
  pinMode(EN2, OUTPUT); 
  pinMode(EN3, OUTPUT); 
  digitalWrite(EN1, HIGH);
  digitalWrite(EN2, HIGH);
  digitalWrite(EN3, HIGH);
}
void loop()
{
  A += B;
  analogWrite(Output1, var1);
  analogWrite(Output2, var2);
  analogWrite(Output3, var3);
  if (toggle == true)
  {
    Serial.print(var1);
    Serial.print(" ");
    Serial.print(var2);
    Serial.print(" ");
    Serial.println(var3);
  }
  var4 = 126 * sin(A + Phase1);
  var1 = var4 + 128;
  var5 = 126 * sin(A + Phase2);
  var2 = var5 + 128;
  var6 = 126 * sin(A + Phase3);
  var3 = var6 + 128;
  if (A >= 2 * PI)
  {
    A = 0;
  }
  potVal = analogRead(Freq_IN);
  delay(potVal);
}
//-------www<electronics-project-hub>com--------//

Premier test de Inmoov

Inmoov est un projet de robot imprimable en 3D. Le premier test réalisable (pour ne pas devoir imprimer tout le corps pour voir ses premiers mouvements s’exécuter) est une plateforme de test d’un doigt: http://www.inmoov.fr/finger-starter/

Voici quelques photos du montage réalisé sur base d’Arduino Uno:

IMG_20140825_143159
IMG_20140825_143223

Ainsi qu’une vidéo:

L’une des pièces est un adaptateur créé pour utiliser notre servo 9g sur ce montage, voici le lien pour la télécharger: http://www.thingiverse.com/thing:440457